I work on algorithms, operations research and reinforcement learning for network optimization and energy consumption management. More recently I also got interested in Integrated Access and Backhaul, LLMs for networks and scheduling.
Modern cellular networks, characterized by heterogeneous deployments, diverse requirements, and mission-critical reliability needs, face significant complexity in end-to-end management. This challenge is exacerbated in private 5G systems, where enterprise Information Technology (IT) teams struggle with costly, inflexible deployment and operational workflows. While software-driven cellular architectures introduce flexibility, they lack robust automation frameworks comparable to cloud-native ecosystems, impeding efficient configuration, scalability, and vendor integration. This paper presents AutoRAN, an automated, intent-driven framework for zero-touch provisioning of open, programmable cellular networks. Leveraging cloud-native principles, AutoRAN employs virtualization, declarative infrastructure-as-code templates, and disaggregated micro-services to abstract physical resources and protocol stacks. Its orchestration engine integrates Language Models (LLMs) to translate high-level intents into machine-readable configurations, enabling closed-loop control via telemetry-driven observability. Implemented on a multi-architecture OpenShift cluster with heterogeneous compute (x86/ARM CPUs, NVIDIA GPUs) and multi-vendor Radio Access Network (RAN) hardware (Foxconn, NI), AutoRAN automates deployment of O-RAN-compliant stacks-including OpenAirInterface, NVIDIA ARC RAN, Open5GS core, and O-RAN Software Community (OSC) RIC components-using CI/CD pipelines. Experimental results demonstrate that AutoRAN is capable of deploying an end-to-end Private 5G network in less than 60 seconds with 1.6 Gbps throughput, validating its ability to streamline configuration, accelerate testing, and reduce manual intervention with similar performance than non cloud-based implementations. With its novel LLM-assisted intent translation mechanism, and performance-optimized automation workflow for multi-vendor environments, AutoRAN has the potential of advancing the robustness of next-generation cellular supply chains through reproducible, intent-based provisioning across public and private deployments.
Link