Maria Tsampazi holds a MEng (’21) in ECE from National Technical University of Athens, Greece. She is a Ph.D. Candidate in Electrical Engineering at the Institute for the Wireless Internet of Things under the supervision of Prof. Tommaso Melodia. Her research lies on NextG networks and intelligent resource allocation in Open RAN. She has received academic awards sponsored by the U.S. National Science Foundation, the IEEE Communications Society, and Northeastern University, and is a 2024 recipient of the National Spectrum Consortium Women in Spectrum Scholarship. She has previously collaborated with both government and industry, including organizations such as the U.S. Department of Transportation and Dell Technologies.
Reconfigurable Intelligent Surfaces (RISs) pose as a transformative technology to revolutionize the cellular architecture of Next Generation (NextG) Radio Access Networks (RANs). Previous studies have demonstrated the capabilities of RISs in optimizing wireless propagation, achieving high spectral efficiency, and improving resource utilization. At the same time, the transition to softwarized, disaggregated, and virtualized architectures, such as those being standardized by the O-RAN ALLIANCE, enables the vision of a reconfigurable Open RAN. In this work, we aim to integrate these technologies by studying how different resource allocation policies enhance the performance of RIS-assisted Open RANs. We perform a comparative analysis among various network configurations and show how proper network optimization can enhance the performance across the Enhanced Mobile Broadband (eMBB) and Ultra Reliable and Low Latency Communications (URLLC) network slices, achieving up to ~34% throughput improvement. Furthermore, leveraging the capabilities of OpenRAN Gym, we deploy an xApp on Colosseum, the world's largest wireless system emulator with hardware-in-the-loop, to control the Base Station (BS)'s scheduling policy. Experimental results demonstrate that RIS-assisted topologies achieve high resource efficiency and low latency, regardless of the BS's scheduling policy.
LinkThe O-RAN ALLIANCE is defining architectures, interfaces, operations, and security requirements for cellular networks based on Open Radio Access Network (RAN) principles. In this context, O-RAN introduced the RAN Intelligent Controllers (RICs) to enable dynamic control of cellular networks via data-driven applications referred to as rApps and xApps. RICs enable for the first time truly intelligent and self-organizing cellular networks. However, enabling the execution of many Artificial Intelligence (AI) algorithms making autonomous control decisions to fulfill diverse (and possibly conflicting) goals poses unprecedented challenges. For instance, the execution of one xApp aiming at maximizing throughput and one aiming at minimizing energy consumption would inevitably result in diametrically opposed resource allocation strategies. Therefore, conflict management becomes a crucial component of any functional intelligent O-RAN system. This article studies the problem of conflict mitigation in O-RAN and proposes PACIFISTA, a framework to detect, characterize, and mitigate conflicts generated by O-RAN applications that control RAN parameters. PACIFISTA leverages a profiling pipeline to tests O-RAN applications in a sandbox environment, and combines hierarchical graphs with statistical models to detect the existence of conflicts and evaluate their severity. Experiments on Colosseum and OpenRAN Gym demonstrate PACIFISTA’s ability to predict conflicts and provide valuable information before potentially conflicting xApps are deployed in production systems. We use PACIFISTA to demonstrate that users can experience a 16% throughput loss even in the case of xApps with similar goals, and that applications with conflicting goals might cause severe instability and result in up to 30% performance degradation. We also show that PACIFISTA can help operators to identify conflicting applications and maintain performance degradation below a tolerable threshold.
LinkReconfigurable Intelligent Surfaces (RISs) are a promising technique for enhancing the performance of Next Generation (NextG) wireless communication systems in terms of both spectral and energy efficiency, as well as resource utilization. However, current RIS research has primarily focused on theoretical modeling and Physical (PHY) layer considerations only. Full protocol stack emulation and accurate modeling of the propagation characteristics of the wireless channel are necessary for studying the benefits introduced by RIS technology across various spectrum bands and use-cases. In this paper, we propose, for the first time: (i) accurate PHY layer RIS-enabled channel modeling through Geometry-Based Stochastic Models (GBSMs), leveraging the QUAsi Deterministic RadIo channel GenerAtor (QuaDRiGa) open-source statistical ray-tracer; (ii) optimized resource allocation with RISs by comprehensively studying energy efficiency and power control on different portions of the spectrum through a single-leader multiple-followers Stackelberg game theoretical approach; (iii) full-stack emulation and performance evaluation of RIS-assisted channels with SCOPE/srsRAN for Enhanced Mobile Broadband (eMBB) and Ultra Reliable and Low Latency Communications (URLLC) applications in the worlds largest emulator of wireless systems with hardware-in-the-loop, namely Colosseum. Our findings indicate (i) the significant power savings in terms of energy efficiency achieved with RIS-assisted topologies, especially in the millimeter wave (mmWave) band; and (ii) the benefits introduced for Sub-6 GHz band User Equipments (UEs), where the deployment of a relatively small RIS (e.g., in the order of 100 RIS elements) can result in decreased levels of latency for URLLC services in resource-constrained environments.
LinkRecent years have witnessed the Open Radio Access Network (RAN) paradigm transforming the fundamental ways cellular systems are deployed, managed, and optimized. This shift is led by concepts such as openness, softwarization, programmability, interoperability, and intelligence of the network, which have emerged in wired networks through Software-defined Networking (SDN) but lag behind in cellular systems. The realization of the Open RAN vision into practical architectures, intelligent data-driven control loops, and efficient software implementations, however, is a multifaceted challenge, which requires (i) datasets to train Artificial Intelligence (AI) and Machine Learning (ML) models; (ii) facilities to test models without disrupting production networks; (iii) continuous and automated validation of the RAN software; and (iv) significant testing and integration efforts. This paper is a tutorial on how Colosseum—the world’s largest wireless network emulator with hardware in the loop—can provide the research infrastructure and tools to fill the gap between the Open RAN vision, and the deployment and commercialization of open and programmable networks. We describe how Colosseum implements an Open RAN digital twin through a high-fidelity Radio Frequency (RF) channel emulator and endto- end softwarized O-RAN and 5G-compliant protocol stacks, thus allowing users to reproduce and experiment upon topologies representative of real-world cellular deployments. Then, we detail the twinning infrastructure of Colosseum, as well as the automation pipelines for RF and protocol stack twinning. Finally, we showcase a broad range of Open RAN use cases implemented on Colosseum, including the real-time connection between the digital twin and real-world networks, and the development, prototyping, and testing of AI/ML solutions for Open RAN.
LinkThe highly heterogeneous ecosystem of Next Generation (NextG) wireless communication systems calls for novel networking paradigms where functionalities and operations can be dynamically and optimally reconfigured in real time to adapt to changing traffic conditions and satisfy stringent and diverse Quality of Service (QoS) demands. Open Radio Access Network (RAN) technologies, and specifically those being standardized by the O-RAN Alliance, make it possible to integrate network intelligence into the once monolithic RAN via intelligent applications, namely, xApps and rApps. These applications enable flexible control of the network resources and functionalities, network management, and orchestration through data-driven intelligent control loops. Recent work has showed how Deep Reinforcement Learning (DRL) is effective in dynamically controlling O-RAN systems. However, how to design these solutions in a way that manages heterogeneous optimization goals and prevents unfair resource allocation is still an open challenge, with the logic within DRL agents often considered as a black box. In this paper, we introduce PandORA, a framework to automatically design and train DRL agents for Open RAN applications, package them as xApps and evaluate them in the Colosseum wireless network emulator. We benchmark 23 xApps that embed DRL agents trained using different architectures, reward design, action spaces, and decision-making timescales, and with the ability to hierarchically control different network parameters. We test these agents on the Colosseum testbed under diverse traffic and channel conditions, in static and mobile setups. Our experimental results indicate how suitable fine-tuning of the RAN control timers, as well as proper selection of reward designs and DRL architectures can boost network performance according to the network conditions and demand. Notably, finer decision-making granularities can improve Massive Machine-Type Communications (mMTC)'s performance by \sim56% and even increase Enhanced Mobile Broadband (eMBB) Throughput by \sim99%.
LinkThe highly heterogeneous ecosystem of Next Generation (NextG) wireless communication systems calls for novel networking paradigms where functionalities and operations can be dynamically and optimally reconfigured in real time to adapt to changing traffic conditions and satisfy stringent and diverse Quality of Service (QoS) demands. Open Radio Access Network (RAN) technologies, and specifically those being standardized by the O-RAN Alliance, make it possible to integrate network intelligence into the once monolithic RAN via intelligent applications, namely, xApps and rApps. These applications enable flexible control of the network resources and functionalities, network management, and orchestration through data-driven control loops. Despite recent work demonstrating the effectiveness of Deep Reinforcement Learning (DRL) in controlling O-RAN systems, how to design these solutions in a way that does not create conflicts and unfair resource allocation policies is still an open challenge. In this paper, we perform a comparative analysis where we dissect the impact of different DRL-based xApp designs on network performance. Specifically, we benchmark 12 different xApps that embed DRL agents trained using different reward functions, with different action spaces and with the ability to hierarchically control different network parameters. We prototype and evaluate these xApps on Colosseum, the world's largest O-RAN-compliant wireless network emulator with hardware-in-the-loop. We share the lessons learned and discuss our experimental results, which demonstrate how certain design choices deliver the highest performance while others might result in a competitive behavior between different classes of traffic with similar objectives.
Link