Education
- MSc course of Computer Science at University of Trento, where he graduated cum laude in 2020
- BSc course of Computer Science from University of Florence, from 2015
Research Interests
Gabriele Gemmi is a Research Scientist at Northeastern University, MA. His research area is Telecommunication, with a focus on mesh networking, 5G networks and rural broadband. In 2013, he enrolled in the BSc course of Computer Science from University of Florence, from 2015 to 2016 he was an Erasmus Student at Carlos III University, Madrid. Then, in 2017 he enrolled in the MSc course of Computer Science at University of Trento, where he graduated cum laude in 2020. In 2023, he obtained his PhD cum laude in the Computer Science PhD program of Ca’ Foscari University of Venice and in the Computer Architecture PhD program from Polytechnic University of Catalunya.
Publications
Softwarized and programmable Radio Access Networks (RANs) come with virtualized and disaggregated components, increasing the supply chain robustness and the flexibility and dynamism of the network deployments. This is a key tenet of Open RAN, with open interfaces across disaggregated components specified by the O-RAN ALLIANCE. It is mandatory, however, to validate that all components are compliant with the specifications and can successfully interoperate, without performance gaps with traditional, monolithic appliances. Open Testing & Integration Centers (OTICs) are entities that can verify such interoperability and adherence to the standard through rigorous testing. However, how to design, instrument, and deploy an OTIC which can offer testing for multiple tenants, heterogeneous devices, and is ready to support automated testing is still an open challenge. In this paper, we introduce a blueprint for a programmable OTIC testing infrastructure, based on the design and deployment of the Open6G OTIC at Northeastern University, Boston, and provide insights on technical challenges and solutions for O-RAN testing at scale.
LinkRecent years have witnessed the Open Radio Access Network (RAN) paradigm transforming the fundamental ways cellular systems are deployed, managed, and optimized. This shift is led by concepts such as openness, softwarization, programmability, interoperability, and intelligence of the network, which have emerged in wired networks through Software-defined Networking (SDN) but lag behind in cellular systems. The realization of the Open RAN vision into practical architectures, intelligent data-driven control loops, and efficient software implementations, however, is a multifaceted challenge, which requires (i) datasets to train Artificial Intelligence (AI) and Machine Learning (ML) models; (ii) facilities to test models without disrupting production networks; (iii) continuous and automated validation of the RAN software; and (iv) significant testing and integration efforts. This paper is a tutorial on how Colosseum—the world’s largest wireless network emulator with hardware in the loop—can provide the research infrastructure and tools to fill the gap between the Open RAN vision, and the deployment and commercialization of open and programmable networks. We describe how Colosseum implements an Open RAN digital twin through a high-fidelity Radio Frequency (RF) channel emulator and endto- end softwarized O-RAN and 5G-compliant protocol stacks, thus allowing users to reproduce and experiment upon topologies representative of real-world cellular deployments. Then, we detail the twinning infrastructure of Colosseum, as well as the automation pipelines for RF and protocol stack twinning. Finally, we showcase a broad range of Open RAN use cases implemented on Colosseum, including the real-time connection between the digital twin and real-world networks, and the development, prototyping, and testing of AI/ML solutions for Open RAN.
Link