Andrea Lacava

PhD Candidate

Education

  • Ph.D. in Computer Engineering - Northeastern University (2025)
  • Ph.D. in Information and Communication Technology (ICT) - Sapienza University of Rome (2025)
  • M.Sc. in Cybersecurity - Sapienza University of Rome (2020)
  • B.Sc. in Computer Engineering - Sapienza University of Rome (2018)

Research Interests

  • Open RAN (O-RAN) Architecture
  • 5G and beyond cellular networks
  • Deep Reinforcement Learning for Cellular Networks
  • Security of the AI in Wireless Networks

Bio

Andrea Lacava is a Ph.D. Candidate in Computer Engineering at the Institute for the Wireless Internet of Things currently enrolled in a double degree program with Northeastern University, USA, under Prof. Tommaso Melodia and Sapienza University of Rome, Italy, under Prof. Francesca Cuomo. In 2020, he obtained his Master’s Degree in Cybersecurity at Sapienza. His main research efforts are focused on enabling Intelligent nextG Cellular Networks through the Open RAN architecture and on studying the security of Bluetooth Low Energy Mesh networks.

Publications

Open Radio Access Networks (RANs) leverage disaggregated and programmable RAN functions and open interfaces to enable closed-loop, data-driven radio resource management. This is performed through custom intelligent applications on the RAN Intelligent Controllers (RICs), optimizing RAN policy scheduling, network slicing, user session management, and medium access control, among others. In this context, we have proposed dApps as a key extension of the O-RAN architecture into the real-time and user-plane domains. Deployed directly on RAN nodes, dApps access data otherwise unavailable to RICs due to privacy or timing constraints, enabling the execution of control actions within shorter time intervals. In this paper, we propose for the first time a reference architecture for dApps, defining their life cycle from deployment by the Service Management and Orchestration (SMO) to real-time control loop interactions with the RAN nodes where they are hosted. We introduce a new dApp interface, E3, along with an Application Protocol (AP) that supports structured message exchanges and extensible communication for various service models. By bridging E3 with the existing O-RAN E2 interface, we enable dApps, xApps, and rApps to coexist and coordinate. These applications can then collaborate on complex use cases and employ hierarchical control to resolve shared resource conflicts. Finally, we present and open-source a dApp framework based on OpenAirInterface (OAI). We benchmark its performance in two real-time control use cases, i.e., spectrum sharing and positioning in a 5th generation (5G) Next Generation Node Base (gNB) scenario. Our experimental results show that standardized real-time control loops via dApps are feasible, achieving average control latency below 450 microseconds and allowing optimal use of shared spectral resources.

Link

RAN Intelligent Controllers (RICs) are programmable platforms that enable data-driven closed-loop control in the O-RAN architecture. They collect telemetry and data from the RAN, process it in custom applications, and enforce control or new configurations on the RAN. Such custom applications in the Near-Real-Time (RT) RIC are called xApps, and enable a variety of use cases related to radio resource management. Despite numerous open-source and commercial projects focused on the Near-RT RIC, developing and testing xApps that are interoperable across multiple RAN implementations is a time-consuming and technically challenging process. This is primarily caused by the complexity of the protocol of the E2 interface, which enables communication between the RIC and the RAN while providing a high degree of flexibility, with multiple Service Models (SMs) providing plug-and-play functionalities such as data reporting and RAN control. In this paper, we propose xDevSM, an open-source flexible framework for O-RAN service models, aimed at simplifying xApp development for the O-RAN Software Community (OSC) Near-RT RIC. xDevSM reduces the complexity of the xApp development process, allowing developers to focus on the control logic of their xApps and moving the logic of the E2 service models behind simple Application Programming Interfaces (APIs). We demonstrate the effectiveness of this framework by deploying and testing xApps across various RAN software platforms, including OpenAirInterface and srsRAN. This framework significantly facilitates the development and validation of solutions and algorithms on O-RAN networks, including the testing of data-driven solutions across multiple RAN implementations.

Link

Next-generation wireless systems, already widely deployed, are expected to become even more prevalent in the future, representing challenges in both environmental and economic terms. This paper focuses on improving the energy efficiency of intelligent and programmable Open Radio Access Network (RAN) systems through the near-real-time dynamic activation and deactivation of Base Station (BS) Radio Frequency (RF) frontends using Deep Reinforcement Learning (DRL) algorithms, i.e., Proximal Policy Optimization (PPO) and Deep Q-Network (DQN). These algorithms run on the RAN Intelligent Controllers (RICs), part of the Open RAN architecture, and are designed to make optimal network-level decisions based on historical data without compromising stability and performance. We leverage a rich set of Key Performance Measurements (KPMs), serving as state for the DRL, to create a comprehensive representation of the RAN, alongside a set of actions that correspond to some control exercised on the RF frontend. We extend ns-O-RAN, an open-source, realistic simulator for 5G and Open RAN built on ns-3, to conduct an extensive data collection campaign. This enables us to train the agents offline with over 300,000 data points and subsequently evaluate the performance of the trained models. Results show that DRL agents improve energy efficiency by adapting to network conditions while minimally impacting the user experience. Additionally, we explore the trade-off between throughput and energy consumption offered by different DRL agent designs.

Link

This demo paper presents a dApp-based real-time spectrum sharing scenario where a 5th generation (5G) base station implementing the NR stack adapts its transmission and reception strategies based on the incumbent priority users in the Citizen Broadband Radio Service (CBRS) band. The dApp is responsible for obtaining relevant measurements from the Next Generation Node Base (gNB), running the spectrum sensing inference, and configuring the gNB with a control action upon detecting the primary incumbent user transmissions. This approach is built on dApps, which extend the O-RAN framework to the real-time and user plane domains. Thus, it avoids the need of dedicated Spectrum Access Systems (SASs) in the CBRS band. The demonstration setup is based on the open-source 5G OpenAirInterface (OAI) framework, where we have implemented a dApp interfaced with a gNB and communicating with a Commercial Off-the-Shelf (COTS) User Equipment (UE) in an over-the-air wireless environment. When an incumbent user has active transmission, the dApp will detect and inform the primary user presence to the gNB. The dApps will also enforce a control policy that adapts the scheduling and transmission policy of the Radio Access Network (RAN). This demo provides valuable insights into the potential of using dApp-based spectrum sensing with O-RAN architecture in next generation cellular networks.

Link

5G and beyond mobile networks will support heterogeneous use cases at an unprecedented scale, thus demanding automated control and optimization of network functionalities customized to the needs of individual users. Such fine-grained control of the Radio Access Network (RAN) is not possible with the current cellular architecture. To fill this gap, the Open RAN paradigm and its specification introduce an “open” architecture with abstractions that enable closed-loop control and provide data-driven, and intelligent optimization of the RAN at the user-level. This is obtained through custom RAN control applications (i.e., xApps) deployed on near-real-time RAN Intelligent Controller (near-RT RIC) at the edge of the network. Despite these premises, as of today the research community lacks a sandbox to build data-driven xApps, and create large-scale datasets for effective Artificial Intelligence (AI) training. In this paper, we address this by introducing ns-O-RAN, a software framework that integrates a real-world, production-grade near-RT RIC with a 3GPP-based simulated environment on ns-3, enabling at the same time the development of xApps, automated large-scale data collection and testing of Deep Reinforcement Learning (DRL)-driven control policies for the optimization at the user-level. In addition, we propose the first user-specific O-RAN Traffic Steering (TS) intelligent handover framework. It uses Random Ensemble Mixture (REM), a Conservative QQ-learning (CQL) algorithm, combined with a state-of-the-art Convolutional Neural Network (CNN) architecture, to optimally assign a serving base station to each user in the network. Our TS xApp, trained with more than 40 million data points collected by ns-O-RAN, runs on the near-RT RIC and controls the ns-O-RAN base stations. We evaluate the performance on a large-scale deployment with up to 126 users with 8 base stations, showing that the xApp-based handover improves throughput and spectral efficiency by an average of 50% over traditional handover heuristics, with less mobility overhead.

Link

Recent years have witnessed the Open Radio Access Network (RAN) paradigm transforming the fundamental ways cellular systems are deployed, managed, and optimized. This shift is led by concepts such as openness, softwarization, programmability, interoperability, and intelligence of the network, which have emerged in wired networks through Software-defined Networking (SDN) but lag behind in cellular systems. The realization of the Open RAN vision into practical architectures, intelligent data-driven control loops, and efficient software implementations, however, is a multifaceted challenge, which requires (i) datasets to train Artificial Intelligence (AI) and Machine Learning (ML) models; (ii) facilities to test models without disrupting production networks; (iii) continuous and automated validation of the RAN software; and (iv) significant testing and integration efforts. This paper is a tutorial on how Colosseum—the world’s largest wireless network emulator with hardware in the loop—can provide the research infrastructure and tools to fill the gap between the Open RAN vision, and the deployment and commercialization of open and programmable networks. We describe how Colosseum implements an Open RAN digital twin through a high-fidelity Radio Frequency (RF) channel emulator and endto- end softwarized O-RAN and 5G-compliant protocol stacks, thus allowing users to reproduce and experiment upon topologies representative of real-world cellular deployments. Then, we detail the twinning infrastructure of Colosseum, as well as the automation pipelines for RF and protocol stack twinning. Finally, we showcase a broad range of Open RAN use cases implemented on Colosseum, including the real-time connection between the digital twin and real-world networks, and the development, prototyping, and testing of AI/ML solutions for Open RAN.

Link